Preliminary data sheet

1. General description

The TDA8931 is a switching power stage for high efficiency class-D audio power amplifier systems.

It contains a Single-Ended (SE) power stage, drive logic, protection control logic, a full differential input comparator and a HVP charger to charge the SE capacitor. With this amplifier a compact 1×20 W closed loop self-oscillating digital amplifier system can be built. The TDA8931 has a high efficiency so that a heat sink is not required up to 20 W (RMS). The system operates on an asymmetrical and a symmetrical supply voltage.

2. Features

- High efficiency
- Operating voltage asymmetrical from 12 V to 35 V
- Operating voltage symmetrical from ±6 V to ±17.5 V
- Thermally protected
- No heat sink required
- Charger for single-ended capacitor
- No pop sound

3. Applications

- Flat panel television sets
- Flat panel monitors
- Multimedia systems
- Wireless speakers
- Micro systems

4. Quick reference data

Table 1:	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
General						
V _P	operating supply voltage	asymmetrical	12	22	35	V
		symmetrical	±6	±11	±17.5	V
lq	quiescent current	Operating mode; $V_P = 22 V$	-	20	30	mA
I _{stb}	standby current	Standby mode; $V_P = 22 V$	-	10	15	mA
I _{sleep}	sleep current	Sleep mode; $V_P = 22 V$	-	100	200	μA

Table 1.						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
η	efficiency	$\label{eq:powerserver} \begin{array}{l} P_{o} = 15 \; W; \; V_{p} = 30 \; V; \\ R_{L} = 8 \; \Omega \end{array}$	89	91	-	%
SE chan	nel					
Po	maximum output power	$R_L = 4 \ \Omega$; THD = 10 %				
		V _P = 26 V	21	22	-	W
		V _P = 22 V	15	16	-	W
		$R_L = 8 \Omega$; THD = 10 %				
		V _P = 30 V	15	16	-	W

Table 1: Quick reference data ... continued

5. Ordering information

Table 2: Ordering information						
Туре	Package)				
number	Name	Description	Version			
TDA8931T	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1			

TDA8931 Power comparator 1 × 20 W

6. Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3:Pin description

Symbol	Pin	Description
V _{SSD}	1	negative digital supply voltage; heat spreader
V _{SSA}	2	negative analog supply voltage
INN	3	inverting input
INP	4	non inverting input
V _{DDA}	5	positive analog supply voltage
POWERUP	6	power-up input
ENABLE	7	enable input
DIAG	8	diagnostic output
CGND	9	control ground; reference ground for pins POWERUP, ENABLE and DIAG
V _{SSD}	10	negative digital supply voltage; heat spreader
V _{SSD}	11	negative digital supply voltage; heat spreader
OVP	12	overvoltage protection reference input
HVP	13	half supply voltage output for charging SE capacitor
STABI	14	decoupling of internal stabilizer
V _{SSP}	15	negative power supply voltage
OUT	16	PWM output
BOOT	17	bootstrap capacitor connection
V _{DDP}	18	positive power supply voltage
HVPI	19	half supply voltage output for reference voltage of input circuitry
V _{SSD}	20	negative digital supply voltage; heat spreader

8. Functional description

8.1 General

The TDA8931 is a switching power stage for high efficiency class-D audio power amplifier systems. It contains a Single-Ended (SE) power stage, drive logic, protection control logic, a full differential input comparator and a HVP charger to charge the SE capacitor (see Figure 1). With this amplifier a compact 1×20 W closed loop self-oscillating digital amplifier system can be built. A second order low-pass filter converts the PWM output signal into an analog audio signal across the speaker.

8.2 Interfacing

The operating modes of the TDA8931 can be controlled by pins POWERUP and ENABLE. Both pins refer to pin CGND. The device has three modes:

- Sleep mode
- Standby mode
- Operating mode

When pin POWERUP = LOW, the power comparator is in Sleep mode, independent of the signal on pin ENABLE. In Sleep mode the SE capacitor charger will be discharged.

When pin POWERUP = HIGH and pin ENABLE = LOW the device is in Standby mode. In Standby mode the device is DC biased and the SE capacitor will be charged and the output is floating.

When both pins POWERUP and ENABLE are HIGH, the device is in Operating mode. A level at pin POWERUP greater than 11 V can also enter the Operating mode, independent of the level on pin ENABLE (see Table 4).

Remark: The switch-on sequence is important. First pin POWERUP = HIGH, then pin ENABLE = HIGH.

Voltage on pin		Mode
POWERUP	ENABLE	
< 0.8 V	-	Sleep
3 V to 7 V	< 0.8 V	Standby
	> 3 V	Operating
> 11 V	-	Operating

Table 4: Interfacing

8.3 Input comparator

The input comparator has a full differential input and is optimized for low noise and low offset. This results in maximum flexibility in the application.

8.4 Half supply voltage input reference (pin HVPI)

When the device is in Standby mode, the external capacitor C6 (see Figure 5) will be charged until it reaches the half of the supply voltage. This pin charges capacitor C6 within 0.5 seconds.

Pin HVPI will be on its final level of $0.5V_P$ before the device starts switching. This results into a plop-noise free start-up behavior.

8.5 Half supply voltage capacitor charger (pin HVP)

When the device is in Standby mode, the SE capacitor C15 (see Figure 5) will be charged until it reaches the half of the supply voltage. This current charges capacitor C15 within 0.5 seconds when a capacitor of 1000 μ F is used. When the voltage on pin HVP has reached the level of 0.5V_P it releases pin ENABLE for external use.

When the device is in Operating mode, pin HVP is switched to floating to minimize dissipation.

When the supply voltage drops, capacitor C15 is discharged and the device is switched off to avoid plop noise.

8.6 **Protections**

Overtemperature, overcurrent, overvoltage and undervoltage sensors are included in the TDA8931. When one of these sensors exceeds its threshold level the output power stage is switched off and the output stage becomes floating. After 1.5 μ s the device will try to restart. When the fault condition is removed the output stage is switched on.

Protection		Output	Remark			
Symbol	Condition	pin DIAG				
OTP	T _j > 150 °C	LOW [1]	self recovering when fault is removed			
OCP	$I_{O} > I_{OCP}$					
OVP	$V_P > V_{P(OVP)fix}$					
UVP	$V_{P} < V_{P(UVP)}$					
ODP	I _O > I _{OCP} and T _j > 140 °C	LOW	recovering by switching pin POWERUP: first to Sleep mode and then to Standby mode			
			recovering by removing supply voltage			

Table 5:Overview protections

[1] Pin DIAG = LOW for minimal $1.5 \,\mu s$.

8.6.1 Overtemperature protection (OTP)

If the junction temperature T_j exceeds the threshold level of approximately 150 °C then the device will shut down immediately. The device will start switching again when the temperature drops.

8.6.2 Overcurrent protection (OCP)

If the output current exceeds the maximum output current threshold level (e.g. when the loudspeaker terminals are short-circuited it will be detected by the current protection) the device will shut-down.

8.6.3 Overvoltage protection (OVP)

When the supply voltage applied to the TDA8931 exceeds the maximum supply voltage threshold level the device will shut down. The supply voltage on which the device stops operating is determined by two external resistors R1 and R2.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

The overvoltage protection level can be determined by the formula:

$$V_{P(OVP)} = \frac{RI + R2}{R2} \times V_{OVP} \tag{1}$$

Where:

 $V_{P(OVP)}$ = overvoltage protection level of supply voltage

R1 = external resistor

R2 = external resistor

V_{OVP} = 1.27 V reference voltage.

Example: The TDA8931 has to shut down at 24 V. When we choose R2 = 10 k Ω , then R1 has to be 178 k Ω and V_{P(OVP)} becomes 24 V.

Remark: When pin OVP is connected to V_{SSD} the $V_{P(OVP)fix}$ level is used.

8.6.4 Undervoltage protection (UVP)

When the supply voltage applied to the TDA8931 drops below the minimum supply voltage threshold level the device is internally set to Standby mode.

8.6.5 Supply voltage drop protection

When the TDA8931T is switched off with the supply, it will be switched off before it reaches the voltage on pin HVP. This prevents switch-off pop noise. This function is not self recovering. The TDA8931T can be recovered by switching to Sleep mode or by removing the supply voltage.

8.6.6 Overdissipation protection (ODP)

In case of a short-circuit across the speaker the dissipation is minimized by the ODP. When the OCP and the OTP are on the same time activated, an over dissipation is defined. The device is set to Sleep mode and is not self-recovering. When pin POWERUP = 0 V or the supply voltage is removed, the device is recovered.

TDA8931

Power comparator 1 × 20 W

9. Internal circuitry

Symbol	Equivalent circuit
Symbol	Equivalent circuit
V _{SSD}	
	1, 10 11, 20 V _{SSA} 001aab815
V _{SSA}	V _{DDA}
	2 001aab817
INN, INP	
M	$3 \xrightarrow{1 \text{ k}\Omega} \underbrace{1 \text{ k}\Omega}_{\pm 20 \%} \xrightarrow{1 \text{ k}\Omega} \underbrace{001 \text{ aab816}}_{\text{V}_{\text{SSA}}}$
V DDA	5 VSSA VSSD 001aab818
POWERUP	6
	Symbol V _{SSD} V _{SSA} INN, INP V _{DDA}

TDA8931

Power comparator 1 \times 20 W

TDA8931

Power comparator 1 \times 20 W

10. Limiting values

Table 7: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).								
Symbol	Parameter	Conditions	Min	Max	Unit			
V _P	operating supply voltage	asymmetrical	12	40	V			
		symmetrical	±6	±20	V			
V _{ENABLE}	maximum voltage on pin ENABLE		-	14	V			
V _{OVP}	maximum voltage on pin OVP		-	14	V			
V _n	voltage on all other pins		$V_{\text{SS}}-0.3$	$V_{DD} + 0.3$	V			
I _{ORM}	repetitive peak output current		-	8	А			
P _{d(max)}	maximum power dissipation		-	2.5	W			
Tj	junction temperature		-	150	°C			
T _{stg}	storage temperature		-55	+150	°C			
T _{amb}	ambient temperature		-40	+85	°C			

11. Thermal characteristics

Table 8:	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance junction to ambient	in free air	<u>[1]</u> 24	K/W
R _{th(j-p)}	thermal resistance junction to pin	in free air	^[2] 16	K/W
R _{th(j-c)}	thermal resistance junction to case	in free air	<u>[3]</u> 3	K/W

[1] Measured in the application board.

- [2] $V_p = 22$ V; $R_L = 4 \Omega$; $V_{ripple} = 2$ V (p-p); $f_{ripple} = 100$ Hz with feed-forward network (470 k Ω and 15 nF).
- [3] Strongly depending on where you measure on the case.

12. Static characteristics

Table 9: Characteristics

V_P = 22 V; T_{amb} = 25 °C; f_{carrier} = 290 kHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Supply voltage									
VP	operating supply voltage	$V_P = V_{DDP} - V_{SSP}$							
		asymmetrical	12	22	35	V			
		symmetrical	±6	±11	±17.5	V			
lq	quiescent current	with load; filter and snubbers connected	-	20	30	mA			
I _{stb}	standby current	Standby mode; SE capacitor charged	-	10	15	mA			
I _{sleep}	sleep current	Sleep mode	-	100	200	μΑ			

Power comparator 1 × 20 W

TDA8931

$V_P = 22 V;$	$T_{amb} = 25 ^{\circ}C; f_{carrier} = 290 \text{kHz}; \text{ unle}$	ess otherwise specified.					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Power-up	input: pin POWERUP						
V _{IL}	LOW-level input voltage	with respect to CGND		-	-	0.8	V
V _{IH}	HIGH-level input voltage	with respect to CGND					
		Standby mode		3	-	7	V
		Operating mode		11	-	VP	V
V _{hys}	hysteresis voltage			-	0.5	-	V
l _l	input current	V _I = 5 V		-	30	40	μA
Enable in	put: pin ENABLE						
V _{IL}	LOW-level input voltage	with respect to CGND		-	-	0.8	V
V _{IH}	HIGH-level input voltage	with respect to CGND	[1]	3	-	12	V
V _{hys}	hysteresis voltage			-	0.3	-	V
l _l	input current	V _I = 5 V		-	30	40	μA
Internal s	tabilizer output: pin STABI						
Vo	output voltage	with respect to V _{SSD}		11	12	14	V
Compara	tor full differential input stage: pir	ns INP and INN					
V _{off(i)(eq)}	equivalent input offset voltage			-	-	10	mV
V _{n(i)(eq)}	equivalent input RMS-noise voltage	20 Hz < f _i < 20 kHz		-	-	15	mV
V _{i(cm)}	common mode input voltage			V _{SSA} + 4	-	V _{DDA} – 5	V
I _{i(bias)}	bias input current			-	24	60	nA
Half supp	bly voltage output for input circuitr	ry: pin HVPI					
V _{HVPI}	output voltage on pin HVPI	Standby and Operating mode		0.5V _P – 0.25	0.5V _P	0.5V _P + 0.25	V
Half supp	bly voltage output to charge SE ca	pacitor: pin HVP					
V _{HVP}	output voltage on pin HVP	Standby mode		0.5V _P – 0.25	0.5V _P	0.5V _P + 0.25	V
I _{charge}	charge current of HVP capacitor			20	45	-	mA
Overtemp	perature protection (OTP)						
T _{OTP}	overtemperature protection level			150	155	-	°C
Overvolta	age protection (OVP)						
V _{P(OVP)fix}	fixed OVP threshold level	level internal fixed		35	37.5	40	V
V _{OVP}	adjustable OVP level		[2]	1.19	1.27	1.35	V
Undervol	tage protection (UVP)						
V _{P(min)}	protection level minimum supply voltage			10	11	12	V
Overcurr	ent protection (OCP)						
I _{OCP}	overcurrent protection level			3.3	4.0	-	А

Table 9: Characteristics ...continued

 $\label{eq:linear} [1] \quad V_{IH} \mbox{ on pin ENABLE must not exceed } V_{DDA}.$

[2] The overvoltage protection can be controlled external (see Section 8.6.3).

13. Dynamic characteristics

Table 10: Characteristics

 V_P = 22 V; T_{amb} = 25 °C; R_L = 4 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Amplifier;	SE channel						
P _{o(max)}	maximum output power	R_L = 4 Ω ; THD = 10 %	[1]				
		V _P = 26 V		21	22	-	W
		V _P = 22 V		15	16	-	W
		$R_L = 8 \Omega$; THD =10 %					
		V _P = 30 V		15	16	-	W
THD	total harmonic distortion	$P_o = 1 \text{ W}, f_i = 1 \text{ kHz}$	<u>[1]</u>	-	0.02	0.1	%
V _{n(o)}	noise output voltage	Operating mode; inputs shorted; gain = 20 dB, AES17 brick wall filter	<u>[1]</u>	-	128	150	μV
G _{v(range)}	gain adjust range		[1]	14	20	26	dB
η	efficiency	P _o = 15 W					
		$V_p = 22 \text{ V}; \text{ R}_L = 4 \Omega$	[1]	87	89	-	%
		$V_p = 30 \text{ V}; \text{ R}_L = 8 \Omega$	<u>[1]</u>	89	91	-	%
PWM outp	out: pin OUT (see <mark>Figure 4</mark>)						
t _r	output voltage rise time			-	20	-	ns
t _f	output voltage fall time			-	20	-	ns
t _{dead}	dead time			-	0	-	ns
t _{r(LH)}	response time of transition from	$V_{i(dif)} = 70 \text{ mV}$		-	120	-	ns
	LOW-to-HIGH	$V_{i(dif)} = 3.3 V$		-	100	-	ns
t _{r(HL)}	response time of transition from	$V_{i(dif)} = 70 \text{ mV}$		-	120	-	ns
	HIGH-to-LOW	$V_{i(dif)} = 3.3 V$		-	100	-	ns
t _{W(min)}	minimum pulse width			-	150	-	ns
R _{DSon}	drain-source on-state resistance of output transistor			-	0.22	0.3	Ω

[1] Measured in the application board.

TDA8931

Power comparator 1 \times 20 W

9397 750 13847 Preliminary data sheet

Fig 5. Typical application diagram with TDA8931 supplied from an asymmetrical supply

14. Application information

Philips

Semiconductors

Power comparator 1×20 W

DA8931

TDA8931

Power comparator 1 × 20 W

Table 11:	Bill of material	
Item	Part	Description
C1	470 μF/35 V	general purpose
C2	100 nF	SMD 0805
C3	2.2 nF	SMD 0805
C4	2.2 nF	SMD 0805
C5	100 nF	SMD 0805
C6	47 μF/25 V	general purpose
C7	2.2 nF	SMD 0805
C8	220 pF	SMD 0805
C9	2.2 μF/16 V	general purpose
C10	220 pF	SMD 0805
C11	220 nF	SMD 1206
C12	15 nF	SMD 0805
C13	100 nF	SMD 0805
C14	680 nF	МКТ
C15	1000 μF/35 V	general purpose
C16	220 nF	SMD 1206
C17	15 nF	SMD 0805
R1	10 Ω	SMD 1206
R2	6.8 kΩ	SMD 0805
R3	3.9 kΩ	SMD 0805
R4	1 kΩ	SMD 0805
R5	47 kΩ	SMD 0805
R6	2.2 kΩ	SMD 0805
R7	10 Ω	SMD 1206
R8	2.2 kΩ	SMD 0805
R9	47 kΩ	SMD 0805
R10	22 Ω	SMD 2512
R11	470 kΩ	SMD 0805
R12	47 kΩ	SMD 0805
R13	15 kΩ	SMD 0805
L1	22 μΗ	TOKO 11RHBP A7503CY-220M
U1	TDA8931	SO20

14.1 Output power estimation

The output power, just before clipping, can be estimated using the following equation:

$$P_{o(1\%)} = \frac{\left(\frac{R_L}{R_L + R_{DSon} + R_{coil} + R_{ESR}} \times V_P\right)^2}{8 \times R_I}$$
(2)

Where:

 $P_{o(1\%)}$ = output power just before clipping at THD = 1 %

 R_L = load impedance

R_{DSon} = on-resistance power switch

R_{coil} = series resistance output coil

R_{ESR} = ESR of the single-ended capacitor

 V_P = supply voltage ($V_{DDP} - V_{SSP}$)

Example: Substituting $R_L = 4 \Omega$, $R_{DSon} = 0.22 \Omega$ (at $T_j = 25 \text{ °C}$), $R_{coil} = 0.045 \Omega$, $R_{ESR} = 0.06 \Omega$ and $V_P = 22 V$ results in output power $P_o = 12.9 \text{ W}$.

The output power at THD = 10 % can be estimated by:

$$P_{o(10\%)} = 1.25 \times P_{o(1\%)} \tag{3}$$

Figure 6 shows the estimated output power as a function of the supply voltage for different load impedances.

17 of 31

14.2 Output current limiting

The output current is limited by the OCP with a threshold level of 3.3 A (minimum). During normal operation the output current should not exceed this threshold level, otherwise the output signal is distorted. The peak output current should stay below 3.3 A and can be estimated using the following equation:

$$I_O \le \frac{V_P}{2 \times (R_{DSon} + R_L + R_{coil} + R_{ESR})} \le 3.3$$
(4)

Where:

 I_{O} = output current in the load in

 V_P = supply voltage ($V_{DDP} - V_{SSP}$)

R_{DSon} = on-resistance power switch

R_L = load impedance

R_{coil} = series resistance output coil

R_{ESR} = ESR of the single-ended capacitor

Example: With a 4 Ω load the OCP will be triggered below a supply voltage of 28 V. This will result in an absolute maximum output power of P_o = 26 W at THD = 10 %.

14.3 Low pass filter considerations

For a flat frequency response (second order Butterworth filter) it is necessary to change the LC-filter components (L1 and C14) according to the speaker impedance. <u>Table 12</u> shows the required components values in case of a 4 W, 6 W or 8 W speaker impedance.

Speaker impedance (Ω)	L1 value (µH)	C14 value (nF)
4	22	680
6	33	470
8	47	330

Table 12: Fi	Iter com	ponents va	alues
--------------	----------	------------	-------

14.4 Thermal behavior (printed-circuit board considerations)

The SO20 package of the TDA8931T has special thermal corner leads, significantly increasing the power capability (reducing R_{th}). The corner leads (pins 1, 10, 11 and 20) should be attached to a copper area (V_{SS}) on the PCB for cooling.

The typical thermal resistance R_{th(j-a)} of the TDA8931T is 24 K/W (free air and natural convection) when soldered on a double sided FR4 PCB with 35 μ m copper layer and cooling area of approximately of 28 cm².

14.4.1 Thermal layout including vias

The bottom side of the double-sided PCB is used to place the SMD components including the TDA8931T and the majority of the signal tracks. The topside is used to place the leaded components.

The remaining area on both top and bottom layer are filled with ground plane for a proper cooling. In this way it is possible to have a cooling area available of about:

- 40 % of the PCB area on the bottom (60 % for signal tracks and SMD components)
- 90 % of the PCB area on the top (10 % for signal tracks)

The PCB area required for a typical mono amplifier is 21.5 cm^2 resulting in a cooling area of about 28 cm². Thermal vias should be placed close to corner leads for a proper heat flow to the top layer of the PCB. Figure 7 is showing the thermal vias indicated as black dots and Figure 8 is showing the heat flow to the copper area on the top layer.

14.4.2 Thermal considerations

To estimate the maximum junction temperature, the following equation can be used:

$$T_{j(max)} = T_{amb} + R_{th(j-a)} \times P_d$$
⁽⁵⁾

Where:

 T_{amb} = ambient temperature

 P_d = power dissipation in the TDA8931T

R_{th(j-a)} = thermal resistance from junction to ambient (24 K/W)

To estimate the power dissipation, the following equation can be used:

$$P_d = P_o \times \left(\frac{1}{\eta} - 1\right) \tag{6}$$

Where:

 P_d = power dissipation

 $P_o = RMS$ output power (W)

 η = efficiency of total application (0.91 for R_L = 8 Ω and 0.89 for R_L = 4 Ω)

The derating curves of the dissipated power as a function of ambient temperature for several values of $R_{th(j-a)}$ are illustrated in Figure 9. A maximum junction temperature $T_i = 150$ °C is taken into account.

Example: TDA8931T mono amplifier, with substituting $P_o = 1 \times 20$ W, $R_{th(j-a)} = 24$ K/W, $P_d = 2.47$ W results in a junction temperature $T_{j(max)} = 119$ °C.

For this example the estimated maximum junction temperature at a high ambient temperature of 60 °C for a mono amplifier driving 4 Ω speaker impedance stays below the OTP threshold level of 150 °C.

20 of 31

Power comparator 1 \times 20 W

14.5 Measured performance figures of mono amplifier with TDA8931

$V_P = 22$	$V; \ K_{L} = 4 \ \Omega, \ f_{i} = 1 \ KHZ; \ H_{L}$	inverted input signal; I amb =	:25 °	C unles	s otnerw	ise speci	nea.
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _P	operating supply voltage		[1]	12	22	35	V
Po	output power	$V_P = 26 \; V; \; R_L = 4 \; \Omega$					
		THD+N = 10 %		-	22	-	W
		THD+N = 1 %		-	20	-	W
		V_P = 22 V; R_L = 4 Ω					
		THD+N = 10 %		-	16.0	-	W
		THD+N = 1 %		-	12.0	-	W
		$V_P = 30 \text{ V}; \text{ R}_L = 8 \Omega$					
		THD+N = 10 %		-	16.0	-	W
		THD+N = 1 %		-	12.0	-	W
THD+N	total harmonic distortion-plus-noise	P _o = 1 W; AES17 brick wall filter					
		$V_p = 22 \text{ V}; \text{ R}_L = 4 \Omega$		-	0.02	-	%
		$V_p = 30 \text{ V}; \text{ R}_L = 8 \Omega$		-	0.02	-	%
η	efficiency	P _o = 15 W					
		$V_p = 22 \text{ V}; \text{ R}_L = 4 \Omega$		-	89	-	%
		$V_p = 30 \text{ V}; \text{ R}_L = 8 \Omega$		-	91	-	%
G _v	closed loop gain	V _i = 100 mV (RMS); f _i = 1 kHz		-	20	-	dB
V _{n(o)}	noise output voltage	inputs shorted; AES17 brick wall filter		-	128	-	μV
S/N	signal-to-noise ratio	unwanted; with respect to $V_0 = 10 V (RMS)$		-	98	-	dB
В	band width	 –3 dB low; LF cut-off point depends on value of SE capacitances 		-	40	-	Hz
		–3 dB high		-	45000	-	Hz
SVRR	supply voltage ripple rejection			45	48	-	dB
f _c	idle carrier frequency			-	290	-	kHz

Table 13: Characteristics

[1] Operates down to UVP threshold level and operates up to OVP threshold level.

TDA8931

Power comparator 1 \times 20 W

14.6 Curves measured in typical application

22 of 31

TDA8931

Power comparator 1 \times 20 W

Power comparator 1 × 20 W

TDA8931

15. Test information

Remark: Only valid if the TDA8931 is used as an audio amplifier.

15.1 Quality information

The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.

Power comparator 1 × 20 W

TDA8931

16. Package outline

Fig 18. Package outline SOT163-1 (SO20)

17. Soldering

17.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

17.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 $^{\circ}$ C to 270 $^{\circ}$ C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness \geq 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

17.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

9397 750 13847

 smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

17.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 $^{\circ}$ C and 320 $^{\circ}$ C.

17.5 Package related soldering information

Table 14:	Suitability of surface	mount IC packages	for wave and reflow	v soldering methods
	· · · · · · · · · · · · · · · · · · ·			

Package [1]	Soldering method			
	Wave	Reflow ^[2]		
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable		
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable 4	suitable		
PLCC ^[5] , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended [5] [6]	suitable		
SSOP, TSSOP, VSO, VSSOP	not recommended [7]	suitable		
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable		

 For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

18. Revision history

Table 15: Revision history							
Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes		
TDA8931_1	20050114	Preliminary data sheet	-	9397 750 13847	-		

19. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

20. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

21. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

22. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

TDA8931

Power comparator 1 \times 20 W

23. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Quick reference data 1
5	Ordering information 2
6	Block diagram 3
7	Pinning information 4
7.1	Pinning
7.2	Pin description 4
8	Functional description 5
8.1	General 5
8.2	Interfacing5
8.3	Input comparator
8.4	Half supply voltage input reference (pin HVPI). 5
8.5	Half supply voltage capacitor charger (pin HVP) 6
0.0	Protections
862	Overcurrent protection (OCP)
863	Overvoltage protection (OVP)
8.6.4	Undervoltage protection (UVP)
8.6.5	Supply voltage drop protection
8.6.6	Overdissipation protection (ODP)
9	Internal circuitry8
10	Limiting values 11
11	Thermal characteristics
12	Static characteristics 11
13	Dynamic characteristics 13
14	Application information 15
14.1	Output power estimation
14.2	Output current limiting
14.3	Low pass filter considerations 18
14.4	Thermal behavior (printed-circuit board
	considerations)
14.4.1	Thermal layout including vias
14.4.2	Measured performance figures of mana amplifier
14.5	
14.6	Curves measured in typical application 22
15	Test information
15.1	Quality information 24
16	Package outline 25
17	Soldering
17.1	Introduction to coldering ourfood mount
	introduction to soldering surface mount
	packages

17.3	Wave soldering	26
17.4	Manual soldering	27
17.5	Package related soldering information	27
18	Revision history	29
19	Data sheet status	30
20	Definitions	30
21	Disclaimers	30
22	Contact information	30

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 14 January 2004 Document number: 9397 750 13847

Published in The Netherlands

